PG & RESEARCH DEPARTMENT OF MATHEMATICS

PREAMBLE

UG : Course Profile, list of courses offered to the other departments & the syllabi of courses offered in the I, V VI semester (With effect from 2021-2024 batch onwards)

PROGRAMME PROFILE B.Sc. (MATHEMATICS)

PROGRAMME SPECIFIC OUTCOMES

PSO No. Upon completion of these Courses the Students would have

- **PSO-1** Become an individual academic excellence to face eligibility exams.
- **PSO-2** Acquired knowledge for higher studies.
- **PSO-3** Summarise the effective written communication of mathematical concepts.
- **PSO-4** Organize skills and knowledge that is translate information presented verbally into Mathematical form
- **PSO-5** Pursue a Higher Studies and become a software professional.

					Contact	Credit	
Semester	Part	Category	Course Code	Course Title	Previous course code	Hours/ week	Min/Max
		Languages /	UTAL107/	Basic Tamil-I/	UTAL105/		
		AECC – II Tamil /	UTAL108/	Advanced Tamil-I/	UTAL106/		
	Ι	Hindi/	UHIL102/	Hindi-I/	UHIL101/	5	3/4
		French	UFRL102	French-I	UFRL101		
I	II	Communicative English/ AECC – I	UENL109/ UENL110	English for Communicative (Stream – I) / English for Communicative (Stream –II)		5	3/4
	III	Major Core (I)/ DSC (I)	UMAM104	Differential Calculus	-	6	4
	III	Major Core (II)/ DSC (II)	UMAM108	Algebra and Trigonometry		6	4
	III	Allied – I (GE)	UMAA117	Mathematical Statistics - I	UMAA115	6	4
	III	PE	UPEM101	Professional English		6	4
	IV	Value Education (VE)				2	1
					TOTAL	36	23/25
		Languages /	UTAL207/	Basic Tamil II/	UTAL205/		
	_	AECC –II Tamil/	UTAL208/	Advanced Tamil-II/	UTAL206/		
	Ι	Hindi/	UHIL202/	Hindi-II /	UHIL201/	5	3/4
		French	UFRL202	French-II	UFRL201		
II				English for Communicative			
		Communicative English /	UENL209/	(Stream – I) /		_	214
	II	AECC – I	UENL210	English for Communicative (Stream–II)		5	3/4

	III	Major Core III / DSC(III)	UMAM207	Vector Calculus		6	5
	III	Major Core IV /DSC(IV)	UMAM208	Analytical Geometry	UMAM105/ UMAM106	5	5
	III	Allied – II (GE)	UMAA207	Mathematical Statistics - II		6	4
II	III	PE	UPEM201	Professional English II		6	4
	IV	Non Major Elective	CT EMI201			3	2
	V	Extension Programme/ Physical Education				-	1/2
	I		I	TOTAL		36	27/30
	I	Languages / AECC –II Tamil/ Hindi/ French	UTAL307/ UTAL308/ UHIL302/ UFRL302	Basic Tamil II/ Advanced Tamil-II/Hindi-II / French-II	UTAL305/ UTAL306/ UHIL301/ UFRL301	5	3/4
	II	Communicative English / AECC – I	UENL309/ UENL310	English for Communicative (Stream – I) / English for Communicative (Stream –II)		5	3/4
		Major Core V / DSC (V)_	UMAM308	Discrete Mathematics	UMAM206/ UMAM606	5	4
III	III	Major Core VI/ DSC(VI)	UMAM309	Differential Equation	UMAM306/ UMAM302/ UMAM301	5	4
		Allied – III (GE)	UCSA304	Mathematical Programming using C	-	3	2
		Allied - III (GE) Practical	UCSR307	Mathematical Programming using C Practical	-	3	2
	IV	Online Course (NPTEL/SP)				3	1/2
		Value Education (VE)			TOTAL	2 31	1 20/23
	I	Languages / AECC –II Tamil/ Hindi/ French	UTAL407/ UTAL408/ UHIL402/ UFRL402	Basic Tamil II/ Advanced Tamil-II/ Hindi-II / French-II	UTAL405/ UTAL406/ UHIL401/ UFRL401	5	3/4
	II	Communicative English / AECC – I	UENL409/ UENL410	English for Communicative (Stream –I) / English for Communicative (Stream –II)		5	3/4
		Major Core VII / DSC(VII)	UMAM407	Integral Transforms	UMAM405	4	4
IV	III	Major Core VIII / DSC (VIII)	UMAM408	Mechanics	UMAM406/ UMAM401	5	4
		Allied – IV (GE)	UPHA402	Electronics for Mathematics	-	3	2
		Allied – IV Practical	UPHR402	Electronics for Mathematics Practical	-	3	2
	_	Soft Skill				2	1
	IV	Non Major Elective				3	2
	v	Extension Programme/ Physical Education				-	-/2
				TOTAL		30	21/25
		Major Core IX / DSC(IX)	UMAM507	Modern Algebra	UMAM501	6	5
V	III	Major Core X / DSC(X)	UMAM514	Real Analysis I	UMAM508/ UMAM512	6	5
							1

V			UMAO501	Graph Theory	UMAM402	5	4		
	***	Major Elective	UMAO502	Number Theory	UMAM506/ UMAM502	5	-		
·	III	Major Core XII/ DSC (XII)	UMAP501/ UMAR511	Project/ R Programming	-	5	5		
	IV	Value Education (VE)				2	1		
					TOTAL	30	25		
		Major Core XIII/ DSC (XII)	UMAM614	Linear Algebra	UMAM604/ UMAM610	6	5		
				Major Core XIV/DSC (XIV)	UMAM615	Real Analysis II	UMAM607/ UMAM611	6	6
			Major Core XV/DSC(XV)	UMAM602	Complex Analysis	UMAM509	6	6	
	III	Major Core XVI/ DSC(XVI)	UMAM613	Operations Research	UMAM603/ UMAM608	6	6		
VI			UMAO607	Mathematical Modeling	UMAM404				
		Major Elective	UMAO606	Mathematics for Construction Craft		5	4		
			UMAO607	Mathematics in SpaceScience					
		Comprehensive Viva	UMAM601			-	1		
	IV	Soft Skill				2	1		
	v	Extension Programme/ PhysicalEducation				_	-/2		
					TOTAL	31	29/31		
				GR	AND TOTAL	194	145/159		

COURSES OFFERED TO OTHER DEPARTMENTS-UG ALLIED

Class &Major	Semester	Catego ry	Course Code	Course Title	Previous course code	Contact Hours/ week	Credit Min/ Max
I B Com & I BCom (CA)			UMAA112	Business Mathematics	-	6	4
I B.SC PHY	Ι		UMAA114	Allied Mathematics I	UMAA106	6	5
I BCA			UMAA110	Mathematical Methods I	-	6	4
I B.Sc (CS)		Allied	UMAA113	Statistical Methods	-	6	4
I B.Sc (CS)			UMAA218	Mathematics for computer Science	-	6	4
II BCA	II		UMAA216	Mathematical Methods II		6	4
I B.SC PHY			UMAA222	Allied Mathematics II	UMAA212	6	5
II B.Sc Chem			UMAA312	Allied Mathematics for Chemistry I	UMAA304	6	5
II B.Sc BIO	III		UMAA307	Bio-Statistics	UMAA305	6	4
II BBA/ II B.COM/ II B.COM CA		Allied	UMAA301	Business Statistics	UMAA211/ UMAA403/ UMAA107	6	4
II B.Sc Chem	IV		UMAA408	Allied Mathematics for Chemistry II	UMAA406	6	5
II BBA			UMAA410	Quantitative techniquesfor Business	UMAA505	6	4

Semester	Part	Category	Course Code	Course Title	Previous course code	Contact Hours/ week	Credit
			UMAR201	Statistics using Excel	-	3	2
			UMAE204	Basic Mathematics for Science	-	3	2
			UMAE202	Mathematics for Business and Decision Making	-	3	2
Π	IV	, Non Major Elective	UIDE302/ UMAE302	Numerical Methods using C++	-	3	2
			UMAE306	Operations Research for Managers	UMAE402	3	2
			UMAA501/Statistical Data AnalysisUMAE305throughSPSS	3	2		
			UMAE308	Mathematics for Competitive Exams	UMAE502	3	2
IV	IV	Non Major Elective	UMAE404	Mathematics for Career Development	-	3	2

NON-MAJOR ELECTIVE

EXTRA CREDIT EARNING PROVISION

			~		Contact Cre		redit
Semester	Part	Category	Coursecode	Course Title	Hours/ week	Min	Max
II	III	Self Study paper	UMAI201	Summer Internship	-	-	1
IV	III	Self Study paper	UMAI401	Summer Internship	-	-	1
VI	III	Self Study paper	UMAS601 UMAS602 UMAS603 UMAS604	Fourier Transforms Simulation Number Theory Project	2	-	2

MATHEMATICAL STATISTICS I UMAA117

Semester : I Category : Allied Class & Major : I B.Sc Mathematics

Course Objectives:

CO No.	To enable the students
CO 1	Understand the concept of probability, conditional probability and its axiom discrete and continuous random variable and its properties.
CO 2	Recognise the Identify the basic concepts of Mathematical Statistics
CO 3	Evaluate expectation and variance and its relevant theorems.
CO 4	Analyse binomial distribution Poisson distribution and their properties
CO 5	Create the solution of Correlation and regression.

UNIT - I PROBABILITY

Concept of Sample Space - Events - Definition of Probability – Some theorems on Probability – Addition theorem of Probability - Conditional Probability - Multiplication theorem of Probability - Independence of Events.

UNIT- II RANDOM VARIABLE

Introduction – Distribution Function - Random Variables - Discrete and Continuous Random Variable.

UNIT - III MATHEMATICAL EXPECTATION AND MOMENT GENERATING FUNCTION 15 Hours

Expectation – Expected Value of Functions of a Random Variable – Properties of Expectation & Variance - Moment Generating Function - properties - Characteristic Function – Properties

UNIT - IV DISCRETE AND CONTINUOUS PROBABILITY FUNCTION 16 Hours

Discrete Uniform Distributions – Bernoulli Distribution – Binomial Distribution – Poisson Distribution – Normal Distribution

UNIT - V CORRELATION AND REGRESSION

Introduction of Correlation - Karl Pearson's Coefficient of Correlation - RankCorrelation - Linear Regression – Properties.

Text Book

• Gupta. S.C. & Kapoor. V.K. (2020), *Fundamentals of Mathematical Statistics*. Sultan & Sons. New Delhi.

Credit : 4 Hours/Week : 6 Total Hours : 78

15 Hours

16 Hours

Reference Books

- Hogg. R.V. & Craig. A.T. (2013). *Introduction to Mathematical Statistics*. Macmillan. New York.
- Mood. A.M. Graybill. F.A. & Boes. D.G. (2017). *Introduction to Theory of Statistics*. McGrawHill. New York.
- Gupta.S.P. (2021). *Statistical Methods*. Sultan Chand & Sons. New Delhi.
- Arora.S. Sumeet Arora (2010). *Comprehensive Statistical Methods*. S.Chand and CompanyLtd. New Delhi.

Course Outcomes:

CO No.	The student will be able to	Cognitive Level
CO 1	Acquire a good knowledge of various Concepts of Probability.	K1
CO 2	Recognize discrete and continuous random variable	K2
CO 3	Compute expectation and variance and discuss relevant theorems.	К
CO 4	Explain normal distribution and its properties.	K4
CO 5	Evaluate Correlation and Regression	K5

MODERN ALGEBRA

UMAM507	

Semester	: V
Category	: Core IX / DSC (IX)
Class & Major	· : III B.Sc Mathematics
Course Obje	ctives

be Object	
CO No.	To enable the students
CO 1	Understand the Algebraic structures such as Groups, Rings and Ideals
CO 2	Recognise the concept of subgroups and its classifications.
CO 3	Apply the permutation groups.
CO 4	Analyse ring and its special classes, quotient groups, Isomorphism and homomorphism.
CO 5	Solve the problems based on the Polynomial rings.

UNIT-I GROUP THEORY

Definition of a Group - Some Preliminary Lemmas- Subgroups.

UNIT-II NORMAL SUBGROUPS

A Counting Principle - Normal Subgroups and Quotient Groups - Homomorphism

15 Hours

15 Hours

Hours/Week:6 Total Hours :78

: 5

Credits

UNIT-III AUTOMORPHISMS

Automorphism - Cayley's theorem - Permutation Groups

UNIT-IV RING

Definition and examples of Ring – Some special classes of Rings – Integral Domain -Homomorphism of Rings - Ideals and Quotient Rings - More Ideals and Quotient Rings.

UNIT-V IDEALS

The field of an integral domain – Euclidean ring – Polynomial Rings.

Text Books

• Herstein.I.N. (2013). *Topics in Algebra*. John Wiley & Sons Publishers. (2nd ed.,). Asia.

Reference Book

- Arumugam. S. Issac. A.T. (2015). Modern Algebra. Scitech Publications Pvt Ltd. India.
- John Fraleigh.B. (2013). *A first course in Abstract Algebra*. Addison Wesley publishing Co. (7th ed.,).
- Rotman. J.J. (2005). A First Course in Abstract Algebra. (3rd ed.,) Prentice.
- A. R. Vasishtha. (2015). *Modern Algebra*. Krishna Publication.

e- Resources

• http://matterhorn.dce.harvard.edu/engage/ui/index.html#/1999/01/82345

Course Outcomes:

CO No.	The student will be able to	Cognitive Level
CO 1	Recognize groups and its classifications.	K1
CO 2	Classify the groups and normal subgroups	K2
CO 3	Use theorems to solve problems in Permutation groups.	K3
CO 4	Describe the concept of ideals, Maximal, prime ideals and homomorphism of rings	K4
CO 5	Write the abstract mathematical proofs in a clear and logical manner.	K5

120

15 Hours

18 Hours

REAL ANALYSIS I UMAM514

Semester : V Category : Core X / DSC (X) Class & Major : III B.Sc Mathematics

Credits : 5 Hours/Week :6 Total Hours :78

Course Objectives:

CO No.	To enable the students
CO 1	Gain the Knowledge of Sequences and Series of real numbers.
CO 2	Understand the concept of Sequences and Series.
CO 3	Analyze the series of Real numbers.
CO 4	Illustrate the Metric Spaces and differentiate the sets and functions
	defined on it.
CO 5	Create the Continuous functions at a point on the real line.

UNIT- I SETS AND FUNCTIONS

Sets & Elements – Operations on Sets - Functions – Real valued functions – Equivalence – Countability and Real numbers – Least Upper Bound.

UNIT- II SEQUENCE OF REAL NUMBERS

Definition – Subsequence – Limit of a Sequence – Convergent Sequence – Divergent Sequence – Bounded Sequence – Monotone Sequence - Operations on Convergent Sequence -Operations on Divergent Sequence

UNIT-III SERIES OF REAL NUMBERS

Limit Superior and Limit Inferior – Cauchy Sequence- Summability of sequences- Limit Superior and Limit Inferior for sequences of sets.

Series: Convergence and Divergence – Series with Non - negative terms – Alternating Series – Conditional Convergence and Absolute Convergence.

UNIT-IV LIMITS AND METRIC SPACES

Rearrangement of series – Tests for Absolute Convergence – Series whose terms form a non increasing sequence – Summation by parts.

Limit of a function of the real line – Metric space – Limits in metric spaces.

UNIT- V CONTINUOUS FUNCTIONS ON METRIC SPACES

Functions continuous at a point on the real line – Reformulation - Functions Continuous on a Metric Spaces – Open Sets – Closed Sets- Discontinuous functions in R^1 .

15 Hours

16 Hours

15 Hours

16 Hours

Text Books

• Goldberg. R. (2020). *Methods of Real Analysis*. Oxford & IBH Publishing co. New Delhi.

Reference Books

- Tom Apostol. M. (2004). *Mathematical Analysis*. Addison Wesley New York (4th ed.,).
- Malik.S.C. and Savita Arora. (2021). *Mathematical Analysis*. Wiley Eastern Limited NewDelhi.
- Sanjay Arora and BansiLal. (2012). *Introduction to Real Analysis*. Satya Prakashan. New Delhi.
- Walter Rudin. (2017). *Real and Complex Analysis*. (7th ed.), McGraw Hill Education. New York.

e- Resources

• http://nptel.ac.in/courses/122104017/

Course Outcomes:

CO No.	The student will be able to	Cognitive Level
CO 1	Recall real valued function, sequence.	K1
CO 2	Recognize Convergent sequence and Divergence sequence, Bounded sequence, Monotone sequence and Cauchy sequence.	K2
CO 3	Analyze the series of Real numbers.	K3
CO 4	Explain limits, metric space and continuous function on a real line.	K4
CO 5	Examine open sets and closed sets	K5

NUMERICAL METHODS UMAM515

Semester	:V	Credits : 5
Category	: Core XI / DSC (XI)	Hours/Week : 6
Class & Major	: : III B.Sc Mathematics	Total Hours :78
Course Object	ives	

CO No.	To enable the students
CO 1	Introduce the basic concepts of Algebraic and Transcendental Equations.
CO 2	Understand the concepts of interpolation for equal and unequal intervals.
CO 3	Analyse the numerical techniques of Differentiation and Integration.
CO 4	Apply the solution of linear system equations.
CO 5	Evaluate numerical solution to ordinary differential equations using direct Method.

UNIT- I SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS 15 Hours Introduction – The Bisection Method – The Iteration Method –The method of False

Position-Newton - Raphson Method.

UNIT- II INTERPOLATION

Introduction - Errors in Polynomial Interpolation - Finite Differences - Newton's formula

for interpolation - Central Difference Interpolation formulae – Practical Interpolation-Interpolation with unevenly spaced points.

UNIT- III NUMERICAL DIFFERENTIATION AND INTEGRATION 16 Hours

Introduction - Numerical Differentiation - Maximum and Minimum Values of a tabulated function - Numerical Integration.

UNIT- IV SOLUTION OF LINEAR SYSTEM EQUATIONS

15 Hours

Introduction – Basic Definitions - Solution of Linear Systems: Direct Methods and Iterative Methods.

UNIT-V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

16Hours

Introduction – Solution by Taylor's series- Picard's Method of successive approximations -Euler's method- Runge-Kutta method- Predictor Corrector Methods.

Text Books

• Sastry, S.S. (2012). *Introductory Methods of Numerical Analysis*. Prentice Hall of India. (5th edition). New Delhi.

References

- Grewal, B.S. and Grewal, J.S. (2016). *Numerical methods in Engineering and Science*. Khanna Publishers. (10th ed.,). India.
- Kandasamy, P. Thilagavathy, K. and Gunavathy, K. (2013). *Numerical Methods*. S.Chand & Company limited(5th Ed). New Delhi.
- Brian Bradie, (2007). *Friendly Introduction to Numerical Analysis*. Pearson Education. (1st ed.,). Asia.

e-Resources:

- http://textofvideo.nptel.iitm.ac.in/video.php?courseId=111101003&p=3
- http://textofvideo.nptel.iitm.ac.in/video.php?courseId=111101003&p=1
- http://textofvideo.nptel.iitm.ac.in/video.php?courseId=111101003&p=1
- http://textofvideo.nptel.iitm.ac.in/video.php?courseId=111101003&p=4
- http://freevideolectures.com/Course/3277/Numerical-methods-of-Ordinary-and- Partial-Differential-Equations.

Course Outcomes

CO No.	The student will be able to	Cognitive Level
CO 1	Understand numerical methods and how they are used to obtain approximate solutions.	K1
CO 2	Apply various interpolation methods.	K2
CO 3	Work out numerical differentiation and integration.	K3
CO 4	Analyse numerical methods to find out solution of algebraic equations using different methods	K4
CO 5	Solve Numerical Solutions and ordinary Differential Equations.	K5

GRAPH THEORY UMAO501

Semester : V Category : Major Elective Class & Major : III B.Sc Mathematics

Course Objectives

CO No.	To enable the students
CO 1	Introduce the notion of graph theory and its applications.
CO 2	Understand the connectedness and components.
CO 3	Connect the concepts of Hamiltonian graphs.
CO 4	Evaluate the concept of matching in bipartite graphs.
CO 5	Design the directed graph by colouring.

UNIT-I GRAPHS AND SUBGRAPHS

Introduction – The Konigsberg Bridge Problem- Graphs and Subgraphs: Definition and Examples - Degrees – Subgraphs – Isomorphism – Ramsey Numbers – Independent sets and coverings-Intersection Graphs and Line Graphs- Matrices - Operations on Graphs.

UNIT- II CONNECTEDNESS

Walks, Trails and Paths - Connectedness and Components - Blocks - Connectivity

UNIT - III EULERIAN , HAMILTONIAN GRAPHS AND TREES 13 Hours

Eulerian Graphs- Hamiltonian Graphs - Characterization of Trees - Centre of a Tree.

UNIT - IV MATCHING AND PLANARITY

Matchings- Matchings in Bipartite Graphs- Planarity: Introduction - Definition and Properties - Characterization of Planar Graphs-Thickness, Crossing and Outer Planarity.

UNIT - V COLOURABILITY AND DIRECTED GRAPHS

Chromatic Number and Chromatic Index- The Five Colour Theorem- Four Colour Problems- Chromatic Polynomials Directed Graphs: Introduction - Definitions and Basic Properties – Path and Connections-Digraphs and Matrices – Tournaments

Text Books

• Arumugam. S. and Ramachandran. S. (2015). *Invitation to Graph Theory*. SciTech Publications (India) Pvt. Ltd. Chennai.

References

• Narsingh Deo. (2016). Graph *Theory with applications to Engineering and Computer Science*. Prentice Hall of India.

Credit : 4 Hours/Week : 5 Total Hours : 65

13 Hours

13 Hours

13 Hours

- --

• Gary Chartrand and Ping Zhang. (2017). *Introduction to Graph Theory*. Tata McGraw-Hill Edition.

Course Outcomes:

CO No.	The student will be able to	Cognitive Level
CO 1	Understand the concepts of graph theory as an application of mathematics in information technology	K1
CO 2	Recall and relate connectivity.	K2
CO 3	Recognize the characteristics of Eulerian Graphs	K3
CO 4	Analyse Characterization of Planar graphs	K4
CO 5	Create special directed graphs and its properties for research purpose.	K5

NUMBER THEORY

UMAO502

Semester	: V
Category	: Major Elective
Class & Majo	r: III B.Sc Mathematics

Course Objectives:

CO No.	To enable the students
CO 1	Acquire basic knowledge in Number theory.
CO 2	Understand the properties of various functions of Number Theory.
CO 3	Apply the concepts of Dirichlet Multiplication.
CO 4	Analyse the basic concepts of Euler Fermat Theorem.
CO 5	Formulate the Reciprocity Law.

UNIT- I THE FUNDAMENTAL THEOREM OF ARITHMETIC

Introduction – Divisibility - Greatest common divisor - Prime numbers – The fundamental theorem of arithmetic- The series of reciprocals of the primes – The Euclidean algorithm - The greatest common divisor of more than two numbers.

UNIT- II ARITHMETICAL FUNCTIONS

Introduction – The mobius function $\mu(n)$ – The Euler totient function $\phi(n)$ – A relation connecting ϕ and μ – A product formula for $\phi(n)$ – The Dirichlet product of arithmetical functions – Dirichlet inverses and the mobius inversion formula – The Mangoldt Function $\Lambda(n)$ - Multiplicative functions.

13 Hours

13 Hours

Credits : 4 Hours/Week: 5 Total Hours : 65

UNIT-III DIRICHLET MULTIPLICATIONS

Multiplicative functions and Dirichlet Multiplication -The inverse of a completely multiplicative function - Lioville"s function - The division function-Generalised convolutions - Formal power series - The bell series of an arithmetical functions - Bell series and Dirichlet multiplication. - Derivatives of arithmetical functions - The Selberg identity.

UNIT -IV CONGRUENCES

Congruences - Definition and basic properties of Congruences – Linear congruence - Reduced residue systems and The Euler-Fermat theorem - Polynomial Congruences modulo p Lagrange theorem - Application of Lagrange's theorem - Simultaneous linear congruences - The Chinese remainder theorem - Applications of the Chinese remainder theorem.

UNIT-V QUADRATIC RESIDUES AND QUADRATIC RECIPROCITY LAW 13 Hours

Quadratic residues – Legendre's symbols and its properties- Evaluation of (-1/p) and (2/p) - Gauss lemma - The quadratic reciprocity law – Applications of the Reciprocity law-The Jacobi Symbol

Text Books

• Tom Apostol. M. (2013). *Introduction to Analytic Number Theory*. Springer-Verlag. New York.

Reference Books

- Neal Koblitz. (1994). A Course in Number Theory and Cryptography. Springer-Verlag. New York.
- John Stillwell. (2010). *Elements of Number Theory*. Springer Verlag. New York.
- Ivan Niven Herbert Zuckerman. S. and Hugh Montgomery.L. (2008). *An Introduction to the Theory of numbers*. Wiley. (5th ed.,). India.

Course Outcomes:

CO No.	The student will be able to	Cognitive Level
CO 1	Recall and relate number theory and its theorems.	K1
CO 2	Recognize the basic concepts of arithmetic functions.	K2
CO 3	Express the concept and results of Lioville"s function.	К3
CO 4	Apply numerical data to form Congruences about the integers	K4
CO 5	Construct Mathematical Proofs using Gauss Law	K5

LINEAR ALGEBRA

UMAM616

S	emester	: VI	Credits : 5
C	ategory	: Core XII / DSC (XII)	Hours/Week : 6
C	Class & Major : III B.Sc Mathematics Total		
C	ourse Obj	jectives	
	CO No.	To enable the students	
	CO-1	Understand the concepts of Dual spaces.	
	CO-2	Describe the Concepts of Inner Product Spaces.	
	CO-3	Analyze Linear transformations.	
	CO-4	Compute Traces and Transpose.	
	CO-5	Formulate Normal Transformations.	
U		CTOR SPACES & DUAL SPACES nentary Basic Concepts – Linear Independence and bases- Dual Space	13 Hours ces.
UNIT-II INNER PRODUCT SPACES& DUAL SPACE 13 I			

Inner Product Spaces - Modules. **UNIT-III LINEAR TRANSFORMATIONS 13 Hours** The Algebra of Linear Transformation - Characteristic Roots-Matrices.

UNIT-IV MATRIX OPERATIONS 13 Hours

Trace and Transpose – Determinants.

UNIT-V HERMITIAN-UNITARY & NORMAL TRANSFORMATIONS 13 Hours

Hermitian-Unitary & Normal Transformations

Text Book

Herstein.I.N. (2013). Topics in Algebra. John Wiley & Sons. •

Reference Books

- Kumaresan.S. (2000). Linear Algebra A geometric Approach. PHI Learning Private LimitedNew Delhi. (10th ed).
- Kenneth Hauffman. (2018). *Linear Algebra*. Person Education India (2nd edu.)
- John B. Fraleigh. (2003). A first course in Abstract Algebra. Addison Wesley publishing Co. (7th ed).

e-Resources

- http://nptel.ac.in/courses/111106051/
- https://www.khanacademy.org/math/linear-algebra

Course Outcomes:

CO No.	On completion of the course the student will be ableto	Bloom's Level
CO-1	Recall dual space and its properties	K1
CO-2	Recognize the concepts of inner product space.	K2
CO-3	Explain the concepts of linear transformation.	K3
CO-4	Evaluate and construct the matrix representing a linear transformation.	K4
CO-5	Construct the normal transformation.	K5 & K6

III & IV EVALUATION COMPONENTS OF CIA

Semester	Category	Course Code	Course Title	Component –III	Component -IV
Ι	III	UMAA117	Mathematical Statistics - I	Problem solving	Assignment
V	III	UMAM513	ModernAlgebra	Seminar	Assignment
V	III	UMAM514	Real Analysis I	Assignment	Seminar
V	III	UMAM515	Numerical Methods	Problem solving	Seminar
V	III	UMAO501	Graph Theory	Seminar	Prototyping
V	III	UMAO502	Number Theory	Problem solving	Seminar
VI	III	UMAM616	Linear Algebra	Assignment	Seminar

PG & RESEARCH DEPARTMENT OF MATHEMATICS

PREAMBLE

PG: Programme Profile and the Syllabi of Courses offered in the I and II Semester along with Evaluation Components III & IV (With Effect From 2021- 2023 Batch Onwards)

PROGRAMME PROFILE M.Sc. (MATHEMATICS)

PROGRAMME SPECIFIC OUTCOMES (PSO)

PSO No. Upon completion of these Courses the Students would have

- **PSO-1** Become an individual academic excellence in the discipline of Mathematics
- **PSO-2** Acquire knowledge for research program
- **PSO-3** Be an entrepreneur for training SET / NET examinations
- **PSO-4** Become a software Developer
- **PSO-5** Executing research projects for multidiscipline courses

Semester	Category	CourseCode	Course Title	Previous course code	Contact Hours/ Week	Credit Min/Max
	Major Core I / DSC I	PMAM110	Abstract Algebra	PMAM107/ PMAM108/ PMAM109	6	4
	Major Core II/ DSC II	PMAM102	Real Analysis	-	6	4
т	Major Core III / DSC III	PMAM103	Ordinary Differential Equations	-	6	4
Ι	Major Core IV / DSC IV	PMAM105	Calculus Of Variations and Integral Equations	-	6	4
	Major Core V / DSC V	PMAM106/ PMAM407	Fuzzy Analysis	-	6	4
•			TOTAL		30	20
	Major Core VI/ DSCVI	PMAM211	Linear Algebra	PMAM209/ PMAM210	5	4
Π	Major Core VII / DSCVII	PMAM202	Measure and Integration	-	5	4
11	Major Core VIII / DSCVIII	PMAM206	Partial DifferentialEquations	-	5	4
	Major Core IX / DSC IX	PMAM207	Classical Mechanics		5	4
	Major Core X / DSC X	PMAM208	Operations Research		5	4
	Non Major Elective				5	4
	Service Learning	PMAX201/ PMAX202	Mathematics for High School Students \ Elementary Mathematics for Higher Secondary Students		-	1
	Online Course	PONL201	NPTEL		-	1 /2
•			TOTAL		30	25 / 27

GRAND TOTAL				120	90/ 92	
			TOTAL		30	25
Library				1	-	
	Major Core XXI / DSCXXI	PMAP401	Project	-	4	5
	Major Core XX / DSCXX	PMAM411	Differential Geometry	-	6	5
IV	Major Core XIX / DSC XIX	PMAM410	Probability theory	-	6	5
	Major Core XVIII / DSC XVIII	PMAM409	Numerical Analysis	-	7	5
	Major Core XVII / DSC XVII	PMAM405	Functional Analysis	-	6	5
			TOTAL		30	20
	Major Core XVI/ DSCXVI	PMAP401	Project	-	2	-
	Major Core XV/ DSCXV	PMAI312	Number Theory and Cryptography	-	5	4
III	Major Core XIV / DSC XIV	PRMC301	Research Methodology	-	5	4
	Major Core XIII / DSCXIII	PMAM314	Topology	PMAM311	6	4
	Major Core XII / DSCXII	PMAM310	Fluid Dynamics	-	6	4
	Major Core XI / DSC XI	PMAM305	Complex Analysis	-	6	4

PROGRAMMES OFFERED TO OTHER DEPARTMENTS – PG

Semester	Category	Course Code	Course Title	Contact Hours/ Week	Credit Min/ Max
	Non MajorElective	PMAE201	LaTeX and MaTLab	3	4
	Practical	LaTeX and MaTLab	2	-	
II	Non MajorElective	PMAE204	Operations Research	5	4
	i von major Lieeu ve		NET/SET/Competitive Exam	5	5
		PMAE203	Discrete mathematics	5	4

EXTRA CREDIT EARNING PROVISION

Semester	Category	Course code	Course Title	Hours/ week	Credit Min /Max
	Self-StudyPaper	PMAS301	Difference Equation	2	-/1
III	Son-Studyr apor	PMAS302	Combinatorial Analysis	2	-/1

131

ABSTRACT ALGEBRA PMAM110

Semester : I Category : Core I / DSC (I) Class & Major: I M.Sc Mathematics

Course Objectives:

CO No.	To enable the students
CO-1	Understand the concept of Sylow's theorem, direct products.
CO-2	Analyze Finite abelian groups and modules
CO-3	Apply the polynomial rings over the rational fields.
CO-4	Evaluate the roots of the polynomials.
CO-5	Investigate the Galois theory.

UNIT-I SYLOW'S THEOREM

Another Counting principle- Sylow's theorem in 1st part of sylow's theorem 1st proof only, 2ndpart of sylow's and 3rdpart of sylow's theorem- Direct products.

UNIT-II FINITE ABELIAN GROUPS Finite abelian groups - Modules.	16 Hours
UNIT-III FIELDS Extension fields – Transcendence of e roots of polynomial.	16 Hours
UNIT-IV FIELDS (CONTINUATION) Roots of Polynomials – More about roots.	15 Hours
UNIT-V FINITE FIELDS Elements of Galois Theory – Solvability by radicals.	15 Hours

Text Book

• Herstein.N. (2013). Topics in Algebra. Wiley Eastern Limited. New Delhi.

Reference Books

- Bhattacharya P.B. Jain S.K. & Nagpaul S.R. (2012). *Basic Abstract Algebra*. Cambridge University press. New York.
- Jacobson.N & W.H. Freeman. (1980). *Basic Algebra. Vol. I & II.* Hindustan publishing Company. New Delhi.
- Malik D.S. Mordeson J.N. & Sen M.K. (2007). *Fundamental of Abstract Algebra*. Mc Graw Hill. New York.
- Artin.M. (2010). *Algebra*. Prentice Hall of India. New Delhi.

Credits : 5 Hours/Week : 6

Total Hours : 78

Course Outcomes:

CO No.	The student will be able to	Cognitive Level
CO 1	Understand the concept of Sylow's theorem, direct products.	K2
CO 2	Describe the properties of finite abelian groups and modules	K3
CO 3	Differentiate the polynomial rings over the rational fields and polynomial rings over the commutate rings.	K4
CO 4	Explain the concepts of roots of the polynomials.	K4
CO 5	Construct the solvability by radicals.	K5

LINEAR ALGEBRA PMAM211

Semester	: II	Credits : 5
Category	: Core VI / DSC (VI)	Hours/Week : 6
Class & Majo	or : I M.Sc Mathematics	Total Hours : 78

Course Objectives:

CO No.	To enable the students
CO-1	Understand the concepts of polynomials and Determinants.
CO-2	Describe the Elementary Canonical Forms.
CO-3	Use the Cyclic Decompositions.
CO-4	Analyse the Inner Product Spaces.
CO-5	Formulate Bilinear forms.

UNIT-I POLYNOMIALS AND DETERMINANTS

Algebras – The Algebras of Polynomials – Commutative Rings – Determinant Functions – Additional Properties of Determinants

UNIT-II ELEMENTARY CANONICAL FORMS

Characteristic Values – Annihilating Polynomials – Invariant Subspaces – Simultaneous Triangulation; Simultaneous Diagonalisation.

UNIT-III THE RATIONAL AND JORDAN FORMS

Cyclic Subspaces and Annihilators – Cyclic Decompositions and the Rational Form – The JordanForm – Computations of Invariant Factors – Semi-Simple Operators.

UNIT-IV OPERATIONS ON INNER PRODUCT SPACE

Form on Inner Product Spaces – Positive Forms – More on Forms – Spectral Theory – Further Properties of Normal Operations.

16 Hours

16 Hours

16 Hours

UNIT-V BILINEAR FORMS

Bilinear Forms – Symmetric Bilinear Forms – Skew- Symmetric Bilinear Forms – Groups Preserving Bilinear Forms.

Reference Books

- Herstein.I.N.(2013). *Topics in Algebra*. John Wiley & Sons. (2nd ed.,).
- Kumaresan.S.(2000). *Linear Algebra A geometric Approach*. PHI Learning Private LimitedNew Delhi. (10th ed.,).
- John B. Fraleigh. (2003). *A first course in Abstract Algebra*. Addison Wesley publishing Co. (7th ed.,).

e- Resources

- http://nptel.ac.in/courses/111106051/
- https://www.khanacademy.org/math/linear-algebra

Course Outcomes:

CO No.	. The student will be able to	
00110		
CO 1	Recall the concepts of polynomials and Determinants.	K1
CO 2	Discuss the Elementary Canonical Forms.	K2
CO 3	Solve Annihilators	K3
CO 4	Analyse the Inner Product Spaces.	K4
CO 5	Design Symmetric Bilinear Forms	K4

III and IV EVALUATION COMPONENTS OF CIA

Semester	Category	Course code	Course Title	Component III	Component IV
Ι	Major Core I / DSC I	PMAM110	Abstract Algebra	Assignment	Term Paper
II	Major Core VI / DSC VI	PMAM210	Linear Algebra	Assignment	Seminar