DEPARTMENT OF PHYSICS

PREAMBLE

UG: Programme Profile and Syllabi of Courses offered in the V Semester along with Evaluation Components III & IV (With effect from 2021-2024 batches onwards)

PROGRAM PROFILE: B.Sc., Physics

PROGRAMME SPECIFIC OUTCOMES (PSO)

PSO No. Upon completion of these courses the undergraduate would have

- **PSO-1** Understand, identify basic principles and concepts of various branches of Physics, correlate and solve the problems in the field of core and applied Physics.
- **PSO-2** Demonstrate the acquired knowledge of Physics on various scientific issues.
- **PSO-3** Design various experiments, electronic circuits investigate and become capable problem solvers, using mathematical, conceptual and hands on skills.
- **PSO-4** Apply analytical abilities acquired from the classroom / laboratory and promote scientific ideas, harness renewable and nonconventional energy resources.
- **PSO-5** Appreciate their experiential learning beyond the classroom; construct logical arguments, using technical language, develop programming skills, approach openended problems and innovate solutions.
- **PSO-6** Secure jobs in banks, in the field of Education, and in industries which require Scientific and Engineering knowledge.
- **PSO-7** Gain knowledge and skill about the electric & electronic circuits design development.

Semester	Part	Category	Course code	Course Title	Previous Course Code	Contact Hours/ Week	Credit Min/Max
	Ι	Languages / AECC – II Tamil/ Hindi/ French	UTAL107/ UTAL108	Basic Tamil I/ Advanced Tamil I	UTAL105/ UTAL106/ UHIL101/ UFRL101	5	3/4
	II	Communicative English /AECC – I	UENL109/ UENL110	English for Communication (Stream – I)/ English for Communication (Stream – II)	UENL107/ UENL108	5	3/4
I	III	Major Core (DSC) – I	UPHM106	Properties of Matter	-	4	4
1		Major Core (DSC) – II	UPHM107	Mechanics	UPHM103	5	5
		Major Core (DSC) – III	UPHR102/ UPHR202	Major Practical I	-	3	2
		Allied (GE) – I	UMAA114	Allied Mathematics I	UMAA104	6	5
		PE	UPEM101	Professional English I	-	6	4
	IV	Value Education (SEC)			-	2	1
			•		TOTAL	36	27/29

	Ι	Languages / AECC – II Tamil/ Hindi/ French	UTAL20/ UTAL208	Basic Tamil I/ Advanced Tamil I	UTAL205/ UTAL206 UHIL201/ UFRL201	5	3/4
	II	Communicative English /AECC – I	UENL209/ UENL210	English for Communication (Stream – I)/ English for Communication (Stream – II)	UENL207/ UENL208	5	3/4
	III	Major Core (DSC) – IV	UPHM204	Thermal and Statistical Physics	UPHM203	4	4
	III	Major Core (DSC) – V	UPHM205	Optics	UPHM302/ UPHM406	4	4
II	III	Major Core (DSC) – VI	UPHR203/ UPHR101	Major Practical II	-	3	2
	III	Allied (GE) - I	UMAA222	Allied Mathematics II	UMAA212	6	5
	III	PE	UPEM201	Professional English I	-	6	4
	III	Internship	UPHI201	Internship / Field Work / Field Project	-	30 Hours	-/1
	IV	NME (Skill Enhancement Course)			-	3	2
	v	Extension Programme/ Physical Education/NCC	-	-	-	-	1/2
					TOTAL	36	28/32
	Ι	Languages / AECC – II Tamil/ Hindi/ French	UTAL307/ UTAL308	Basic Tamil I/ Advanced Tamil I	UTAL305/ UTAL306/ UHIL301/ UFRL301	5	3/4
	П	Communicative English /AECC – I	UENL309/ UENL310	English for Communication (Stream – I)/ English for Communication (Stream – II)	UENL307 / UENL308	5	3/4
	III	Major Core (DSC) – VII	UPHM305	Electricity and Magnetism	UPHM402	5	4
III	Ш	Major Core (DSC) – VIII	UPHM304	Mathematical Physics	UPHM509	4	3
	Ш	Major Core (DSC) – IX	UPHR305	Major Practical III	-	3	2
	Ш	Allied (GE) - III	UCSA306	Computational Physics with Python	-	3	3
	III	Allied (GE) - IV	UCSR310	Computational Physics with Python Lab	-	3	2
	IV	Value Education (SEC)	-	-	-	2	1
					TOTAL	30	21/23

	Ι	Languages / AECC – II Tamil/ Hindi/ French	UTAL407/ UTAL408	Basic Tamil I/ Advanced Tamil I	UTAL405/ UTAL406/ UHIL401/ UFRL401	5	3/4
	II	Communicative English /AECC – I	UENL409/ UENL410	English for Communication (Stream – I)/ English for Communication (Stream – II)	UENL407/ UENL408	5	3/4
	III	Major Core (DSC) – X	UPHM407	Atomic Physics	-	6	4
	III	Major Core (DSC) – XI	UPHR405	Major Practical IV	-	3	3
	III	Allied (GE) -V	UCHA401/ UCHA402/ UCHA403	Chemistry for Physics	-	3	3
IV	III	Allied (GE) - VI	UCHA402/ UCHR403	Volumetric and Organic Analysis-I	-	3	2
	III	Internship	UPHI401	Internship / Field Work / Field Project	-	30 Hours	-/1
	IV	NME (Skill Enhancement Course)			-	3	2
	IV	Soft Skill (SEC)			-	2	1
	V	Extension Programme/ Physical Education/NCC			-	-	-/2
					TOTAL	30	21/26
	III	Major Core (DSC) – XII	UPHM507	Quantum Mechanics and Relativity	UPHM501	5	5
	III	Major Core (DSC) – XIII	UPHM508	Basic Electronics	UPHM505	4	4
	III	Major Core (DSC) – XIV	UPHM509	Solid State Physics	UPHM506/ UPHM608	4	4
V	III	Major Elective (Discipline Specific Elective) - XV	UPHO501/ UPHO502	Medical Physics / Energy Physics	-	4	4
	III	Major Core Practical (DSC) – XVI	UPHR503	Major Practical V	-	3	3
	III	Major Core (DSC) – XVII	UPHP501/ UPHP502	Project / Instrumentation Techniques	-	5	4/5
	III	Online Course		NPTEL	-	3	1⁄2

				GRAN	D TOTAL	192	148/167
					TOTAL	30	25/29
	v	Extension Programme	UROX601	Rural Outreach Programme	-	30 Hours	-/1
	v	Extension Program - me/Physical Education/NCC			-	-	-/2
	IV	Soft Skill (SEC)			-	2	1
	III	Internship	UPHI601	Internship / Field Work / Field Project	-	30 Hours	-/1
	III	Viva Voce	UPHM610	Comprehensive Viva Voce	-	-	1
VI	III	Major Elective (Discipline Specific Elective) - XXIII	UPHO601/ UPHO603/ UPHO604	Nanophysics/ Functional Materials/ Astrophysics and Special Theory of Relativity	-	5	4
	III	Major Core (DSC) – XXII	UPHR605	Major Practical VI	-	3	3
	III	Major Core (DSC) – XXI	UPHM613	Digital Electronics	-	5	4
	III	Major Core (DSC) – XX	UPHM612	Material Science	-	5	4
	III	Major Core (DSC) – XIX	UPHM611	Nuclear and Radiation Physics	-	5	4
	III	Major Core (DSC) – XVIII	UPHM609	Numerical methods and Basic Computational Physics	-	5	4

LIST OF COURSES OFFERED TO OTHER DEPARTMENTS

NON-MAJOR ELECTIVES

Semester	Part	Category	Course Code	Course Title	Previous Course Code	Contact Hours/ Week	Credit Min/Max
			UPHE202	Applied Physics	-	3	2
		IV (Skill Enhancement Course)	UPHE203	Biomedical Instrumentation	-	3	2
II	IV		UPHE204	Electrical Appliances	-	3	2
			UPHE205	Telecommunication System	UPHE304/ UPHE503	3	2
			UPHE206	Servicing and maintenance of home appliances	UPHE303	3	2

Semester	Part	Category	Course Code	Course Title	Previous Course Code	Contact Hours/ Week	Credit Min/ Max
III	III	Allied(GE) – V	UPHA305	Electronics for Computer Science	-	3	3
III	III	Allied(GE) – VI	UPHR305	Electronics Practical for Computer Science	-	3	2
IV	III	Allied(GE) – VII	UPHA402	Electronics for Mathematics	-	3	3
IV	III	Allied(GE) – VIII	UPHR402	Electronics Practical for Mathematics	-	2	2
IV	III	Allied (GE) – IX	UPHA403	Digital Electronics for Computer Science	-	3	3
IV	III	Allied (GE) – X	UPHR403	Digital Electronics Practical for Computer Science	-	3	2

COURSES OFFERED TO OTHER DEPARTMENTS

Experiential Learning (Mandatory)

	Cours	e Mapping	Collaborating Agency - MSME			
Semester	Course Code	Course Course Assessment		Course Title	Hour / Days/ Month	Mode of Evaluation
IV	UPHM508	Basic Electronics	Component IV	PCB Designing	4 Days	Reflection

QUANTUM MECHANICS AND RELATIVITY UPHM507

Semester	: V	Credit	: 5
Category	: Major Core (DSC) – XII	Hours/Week	:5
Class & Majo	or: III B.Sc Physics	Total Hours	: 65

Course Objectives

CO No.	To enable the students
CO-1	Understand the concept of quanta and its consequences in the microscopic world.
CO-2	Familiarize the new mathematical tools such as operators and linear vector space required for venturing into the realm of quantum mechanics and to introduce Schrodinger wave equation.
CO-3	Integrate the use of Schrodinger wave equation through some simple one- dimensional problems and their solutions.
CO-4	Know the concepts of Special Theory of Relativity.
CO-5	Expose the Applications of Quantum Mechanics and Relativity.

UNIT- I FOUNDATIONS OF WAVE MECHANICS

Introduction-Inadequacy of Classical Mechanics - Dual Nature of Light and Matter -de Broglie Wavelength-Compton Effect - Davisson-Germer and G.P.Thomson Experiments -Heisenberg Uncertainty Principle - Electron Microscope - Gamma Ray Microscope.

UNIT -II SCHRODINGER EQUATION

Schrodinger Equation – Physical Interpretation of Wavefunction– Probability Current Density -Expectation Values-Ehrenfest Theorem -Eigenfunction and Eigenvalue -Eigenvalue Equation –Orthogonal and Normalized Wavefunction.

UNIT- III APPLICATIONS OF SCHRODINGER EQUATION 14 Hours

Free Particle –Particle in a Bound State – Eigenfunctions and Eigenvalues of a Particle in a Rectangular Potential - Reflection and Transmission Coefficient Rectangular Potential -Particle in 1-DWell of Finite Depth -Bound States -One Dimensional Linear Harmonic Oscillator.

UNIY-IV RELATIVITY THEORY

Frames of References –Inertial Frames and Non-inertial Frames–Galilean Transformation - Michelson-Morley Experiment - Interpretation of the Results - Postulates of Special Theory of Relativity -Lorentz Transformation Equations -Length Contraction -Time Dilation -Variation of Mass with Velocity - Mass- Energy Equivalence - Introduction to General Theory of Relativity.

UNIT-V APPLICATIONS OF QUANTUM MECHANICS

Teleportation- Instantaneous Communication -Quantum Computers -Quantum Tunneling -Quantum Sensing and Imaging -Quantum Metrology -The Transistor -Energy Harvesters -- Ultra Precise Thermometer -- Lasers-Randomless Generator -- Quantum Cryptography –Ultra Price Clocks.

Text Books

- Murugeshan, R. & Sivaprasath Kiruthiga. (2017). *Modern Physics.* (18th Ed.). S.Chand & Company Ltd. New Delhi.
- G. Aruldhas. (2008). *Quantum Mechanics* (2nd Ed). PHI.
- Hugh D. Young and Roger A. Freedman. (2015). Sears & Zemansky's University Physics with Modern Physics. (14th Ed.).
- Steven Weinberg. (2021). Foundations of Modern Physics. Cambridge University Press. •
- Mathews, P.M. (2010). A Text Book of Quantum Mechanics, Tata McGraw-Hill. New Delhi.

Reference Books

- Albert Maxwell, Quantum Mechanics, Independently Published, paperback Large Print, September 6, 2021, ISBN-13 : 979-8472288415.
- Jacob Dunningham, and Vlatko Vedral. (2010). Introductory Quantum Physics and Relativity. World Scientific.
- Ghatak and Loganathan, (2004). Introduction to Quantum Mechanics. Macmillan India Ltd. India.
- P.M. Mathews and K. Venkatesan. (2010). A Textbook of Quantum Mechanics. (2nd Ed). Tata McGraw Hill. PVT.
- K.D. Krori. (2012). Fundamentals of Special and General Relativity, PHI.

13 Hours

12 Hours

13 Hours

e-Resources

- https://www.fisica.net/mecanica-quantica/Griffiths%20-%20Introduction %20to%20quantum%20mechanics.pdf
- https://www.amazon.in/Relativity-Quantum-Mechanics-Principles-Universe/dp/1925729338

Course Outcomes:

CO No.	On completion of the course the student will be able to	Bloom's Level
CO-1	Acquire fundamental knowledge of quanta of the microscopic world.	K1 & K2
CO-2	Understand the Mathematical Tools into the realm of Wave mechanics.	K3
CO-3	Integrate the use of Schrodinger wave equation through some simple one-dimensional problems and their solutions.	K4
CO-4	Expose the Applications of Quantum Mechanics and Relativity.	K1 & K3
CO-5	Adopt the concepts of Special Theory of Relativity.	K6

BASIC ELECTRONICS UPHM508

Semester	: V	Credit	: 4
Category	: Major Core (DSC) – XII	Hours/Week	: 4
Class & Majo	or: III B.Sc Physics	Total Hours	: 52

Course Objectives:

CO No.	To enable the students
CO-1	Understand the concepts of semiconductor devices.
CO-2	Realize the behavior of special purpose of Transistors.
CO-3	Demonstrate the Circuits for Rectifiers and Multivibrators.
CO-4	Verify the Circuits of Oscillators using basic Components.
CO-4	Explore the Construction and Working of an Operational Amplifier.

UNIT I INTRODUCTION TO SEMICONDUCTOR

Classification of Solids in terms of Forbidden Energy Gap –Semiconductor Diode – Characteristics–Zener Diode– Working and Output Characteristics–Voltage Stabilization using Zener Diode.

103

UNIT II TRANSISTOR CIRCUITS

Transistor CB, CE, CC Configurations-Common Emitter Transistor as an Amplifier - DC and AC Load Line Analysis - Transistor Biasing - Stabilization - Base Resistor Method-Feedback Resistor Method - Voltage Divider Bias Method.

UNIT III RECTIFIERS AND MULTIVIBRATORS

Half–Wave and Full–Wave Bridge Rectifiers–Output and Efficiency of Full Wave Rectifier – Expressions for Efficiency and Ripple Factor –Multivibrators – Types of Multivibrators– Astable, Monostable, Bistable Multivibrator – Circuit Details and Operations.

UNIT IV CIRCUIT ANALYSIS AND OSCILLATORS

Wave– Shaping Circuits: Differentiating Circuit – Output Waveforms – Integrating Circuit – Output Waveforms – Clipping and Clamping Circuits–Fundamental Principles of Oscillators – Concept of Positive Feedback – Types of Oscillators – Hartley, Colpitts, Phase Shift and Wien Bridge Oscillators.

UNIT V OPERATIONAL AMPLIFIERS

Introduction – Characteristics of an Ideal OP–AMP – CMRR – Slew Rate – **Input/Output Offset Voltages** - Inverting/Noninverting Amplifiers - Adder and Difference Amplifiers– Differential Amplifier – Integrator, Voltage Follower, Comparator.

Text Books

- Hugh D. Young and Roger A. Freedman. (2015). Sears & Zemansky's University Physics with Modern Physics. (14th Ed.).
- Chattopadhyay, D. & Rakshit, P.C. (2015). *Foundations of Electronics*, New Age International Publishers.
- Murugeshan, R. & Sivaprasath Kiruthiga. (2017). *Modern Physics. (18th Ed.).* S.Chand & Company Ltd. New Delhi.

Reference Books

- Gupta & Kumar. (2012). *Hand book of Electronics*. Pragati Prakhasan, Meerut.
- Theraja, B.L. (2016). *Basic Electronics.(Solid State)* in multicolor ed., S. Chand & Company Ltd. New Delhi.
- Ramakant A. Gayakwad. (2015). *Operational Amplifiers and Linear Integrated Circuits*. Pearson Education. (4th Ed.). India.
- Jacob Millman; Christos C Halkias; Chetan D Parikh. (2010). *Millman's Integrated Electronics : Analog and Digital Circuits and Systems.* (2nd Ed.). Tata McGraw Hill Education. New Delhi.

e-Resources

- https://books.google.co.in/books?id=GyZyhuY4SngC&printsec=frontcover&redir_esc=y #v=onepage&q&f=false
- Basic-Electronics-D-P-Kothari/dp/9332901589

11 Hours

11 Hours

10 Hours

Course Outcomes

CO No.	On completion of the course the student will be able to	Bloom's Level
CO – 1	Attain basic concepts of semiconductors.	K1 & K2
CO – 2	Understand the transistor and its types.	K3 & K4
CO – 3	Establish Rectifier and Multivibrator.	K1 & K3
CO – 4	Display transistors in circuit, Oscillator.	K5
CO – 5	Execute the Differentiator, Integrator, Adder, Subtractor using Operational Amplifier.	K4 & K6

SOLID STATE PHYSICS UPHM509

Semester	: V	Credit	:	4
Category	: Major Core (DSC) – XIV	Hours/Week	:	4
Class & Major	: III B.Sc Physics	Total Hours	: 5	52

Course Objectives:

CO No.	To enable the students	
CO – 1	Demonstrate an understanding of the crystal lattice and how the main lattice	
0-1	types are described.	
	Formulate the theory of X-ray diffraction in the reciprocal lattice (k-space)	
CO – 2	formalism and apply this knowledge to generalize the formulation for matter	
	waves.	
CO – 3	Analyze the Electron Theory of Metals and its Applications.	
CO – 4	Classify the Mechanical Properties of Metals with Merits and Demerits.	
CO – 5	Expose the concept of Magnetic and Dielectric Materials.	

UNIT-I (a) CLASSIFICATION OF MATERIALS

10 Hours

Classification of Solids – Types of Bonds and their Energies – Bond Formation Mechanism – Ionic and Covalent Bonds – Thermal and Electric Materials – Smart Materials.

(b) MECHANICAL PROPERTIES OF METALS

Elastic Deformation – Plastic Deformation – Interpretation of Tensile Stress–Strain Curves – Yield Criteria and Macroscopic Aspects of Plastic Deformation – Property Variability and Design Factor.

UNIT II CRYSTAL STRUCTURE

Basics of Crystallography – Unit Cell – Crystal Lattice and Basis– Seven Classes of Crystals – Bravais Lattice – Miller Indices – Symmetry Operations – Point Groups and Space

Cubic, HCP, FCC and BCC– Examples: NaCl, Diamond and ZnS Structures.

Groups – Types of Lattice (Plane Lattice with BCC and FCC) –Structure of Crystals: Simple

UNIT III DIFFRACTOMETRY

X ray Spectrum - Moseley's Law - Diffraction of X-Rays by Crystals - Bragg's Law in One Dimension - Experimental Method in X-ray Diffraction – Laue's Method, Rotating Crystal Method - Powder Photograph Method – Reciprocal Lattice – Brillouin Zone.

UNIT-IV ELECTRON THEORY OF METALS

Classical Free Electron Theory – Drawbacks of Classical Theory– Quantum Theory of Free Electron– Somerfield's Model for Free Electron (1D Solids, generalization for 3D Solids) – Electron Energies in a Metal – Band Theory of Solids –Energy Gaps – Density of States – Bands in Conductors, Insulators and Semiconductors – Factors Affecting Electrical Resistance of Materials.

UNIT-V MAGNETIC MATERIALS AND DIELECTRICS

Types of Magnetic Materials – Magnetic Permeability, Magnetization, Susceptibility, Electric Current in Atoms – Bohr Magneton– Electron Spin – Magnetic Moment due to Nuclear Spin – I-H Curve– Magnetic Moments due to Electron Spin – Ferromagnetism the Domain Structure – Soft and Hard Magnetic Materials– Polarization Electronic, Ionic, Orientation and Space Charge Polarization – Temperature and Frequency Effects – Electric Breakdown – Ferroelectric Materials.

Text Books

- Hugh D. Young and Roger A. Freedman. (2015). Sears & Zemansky's University Physics with Modern Physics. (14th Ed.).
- Pillai, S.O. (2020). Solid State Physics, New Age International Private Limited.
- Gupta, R.B. (2001). Material Science for AMIE, Umesh Publications.
- Arumugam, M. (2018). *Material Science*, Anuradha Agencies.

Reference Books

- Kittel, C. (2012). Introduction to Solid State Physics, Wiley. (8thEd.).
- S.O. Pillai. (2012). *Rudiments of Materials Science*, New Age International Private Limited.
- Raghavan, V. (2015), *Materials Science and Engineering a First Course*, Prentice Hall of India. Learning private Limited (6th ed.)

e-Resources

- http://metal.elte.hu/~groma/Anyagtudomany/kittel.pdf
- https://www.wiley.com/en-us/Introduction+to+Solid+State+Physics%2C+8th+Editionp-9780471415268

11 Hours

10 Hours

Course Outcomes:

CO No.	On completion of the course the student will be able to	Bloom's Level
CO – 1	Know the types of materials and mechanical properties of metals.	K1 & K2
CO – 2	Understand the basic concepts of Crystal structures.	K3
CO – 3	Recognize the Importance of X-Ray and diffraction concept.	K4
CO – 4	Analyze the effect of electrons in different kind of materials	
	using various theories like classical, quantum.	K1 & K5
CO – 5	Manage the magnetic and dielectric materials with its uses.	K4 & K6

MEDICAL PHYSICS UPHO501

Semester	: V	Credit : 4
Category	: Major Elective (DSE) - XV	Hours/Week : 4
Class & Maj	jor: III B.Sc Physics	Total Hours : 52

Course Objectives:

CO No.	To enable the students
CO – 1	Understand the basics of X-rays and its Applications.
CO – 2	Realize the importance of radiation effect and safety.
CO – 3	Investigate the components of biomedical instrumentation and its Applications.
CO – 4	Categorize the image processing for medical physics.
CO – 5	Interpret the application of Laser in Medical field.

UNIT-I: X-RAYS PRODUCTION

Introduction to X-Ray - X-ray tube design - tube cooling - stationary mode - Rotating anode X-ray tubes - Tube rating - quality and intensity of X-ray. X-ray generator circuits - half wave and full wave rectification - filament circuit - kilo voltage circuit - high frequency generator - exposure timers - HT cables.

UNIT -II: RADIATION SAFETY

Introduction to Radioactivity-Artificial and natural - radioactivity -Physical features of radiation-units of radiation- conventional sources of radiation, Interaction of different types of radiation with matter -penetration power in living cells-radiation damage to the cell-effect of radiation on cells -radiation dosimetry.

UNIT -III: BIOMEDICAL INSTRUMENTATION

Development of biomedical instrumentation-biometrics-introduction to the maninstrument system-components of man-instrument system-transducers for biomedical applications-biomedical computer applications-computer analysis of ECG-computerized axial tomography (CAT) Scanners.

12 Hours

10 Hours

UNIT-IV: MEDICAL IMAGING PHYSICS

Radiological imaging - Radiography - Filters - grids - cassette - X-ray film - fluoroscopy - computed tomography scanner - principle function -display - generations – mammography-ultrasound imaging - magnetic resonance imaging.

UNIT-V LASERS IN MEDICINE

Production of laser- effects of laser radiation on tissues - photo thermal effectsphotochemical effects –photodynamic therapy-Laser applications in therapy and diagnosisopthalmology-Fibreoptic endoscopy and dentistry-Laser as a beautician's tool-laser hazardsbiological effects.

Text Books

- Ervin B. Podgorsak, (2016). *Radiation Physics for Medical Physicists (Graduate Texts in Physics)*, (3rd Ed.). Springer.
- P.K. Bajpai. (2010). Biological Instrumentation and Methodology, S. Chand & Co.
- K. Thayalan, (2017), *Basic Radiological Physics*, Jayapee Brothers Medical Publishers Pvt. Ltd. New Delhi.
- Bushberg, J.T., Anthony Seibert .J, Leidholdt, E.M, Bonne J.M *The Essential Physics of Medical Imaging: Lippincot*, Williams and Wilkins. Second Edition (2011).
- John G. Webster. and A.J. Nimunkar (2020), *Medical Instrumentation Applications and Design*, John Wiley and Sons. (5th Ed.).

Reference Books

- Biomedical instrumentation-Leslie Cromwell, Fred J. Weibel-Erich (2021) A.Pfeiffer-Pearson Publications (2nd Ed.).
- R.W. Wayanant. (2001). Lasers in Medicine. (1st Ed.). Plenum Publishing Co.
- Leslie Cromwell. (2010). Biomedical Instrumentation and Measurements. PHI Learning. (2nd Ed.).
- Ramesh Chandra, (2011). *Nuclear Medicine Physics: The Basics Lippincot*, Williams and Wilkins.

e- Resources

- https://link.springer.com/book/10.1007/978-3-319-61540-0
- https://www.routledge.com/Medical-Physics-and-Biomedical-Engineering/Brown-Smallwood-Barber-Lawford-Hose/p/book/9780750303682

Course Outcomes:

CO No.	On completion of the course the student will be able to	Bloom's Level
CO – 1	Attain basic concepts of X-Ray in circuits.	K1 & K2
CO – 2	Understand the effect of radiation in living systems.	K3
CO – 3	Establish the biomedical instrumentation in ECG, CAT.	K1 & K3
CO – 4	Demonstrate the various scanning process in medical fields.	K5
CO – 5	Build the concept of laser application, hazards and biological	K6
	systems.	110

108

ENERGY PHYSICS UPHO502

Semester : V Category : Major Elective (DSE) - XV Class & Major: III B.Sc Physics

Course Objectives:

CO No.	To enable the students	
CO – 1	Remember the concept of energy sources and its applications.	
CO – 2	Understand the working principles of solar energy.	
CO – 3	Integrate the photovoltaic generation, limitation and efficiency.	
CO – 4	Detect the concepts of biomass energy in plant.	
CO – 5	Expose the Applications of wind energy and other energy resources.	

UNIT I INTRODUCTION TO ENERGY SOURCES

World's reserve of Commercial energy sources and their availability-India's production and reserves-Conventional and non-conventional sources of energy, comparison – Coal- Oil and natural gas –applications - merits and demerits – Renewable and Non-Renewable energy sources.

UNIT II SOLAR THERMAL ENERGY

Solar constant -Solar spectrum-Solar radiations outside earth's atmosphere –at the earth surface- on tilted surfaces -Solar Radiation geometry-Basic Principles of Liquid flat plate collector –Materials for flat plate collector -Construction and working- Solar distillation–Solar disinfection - Solar drying-Solar cooker (box type)-Solar water heating systems – Swimming pool heating.

UNIT III PHOTOVOLTAIC SYSTEMS

Introduction-Photovoltaic principle-Basic Silicon Solar cell- Power output and conversion efficiency-Limitation to photovoltaic efficiency-Basic photovoltaic system for power generation-Advantages and disadvantages-Types of solar cells-Application of solar photovoltaic systems.

UNIT IV WIND ENERGY AND TIDAL ENERGY

Wind Energy Conversion-Classification and description of wind machines, wind energy collectors-Energy storage- Energy from Oceans and Chemical energy resources-Ocean thermal energy conversion-tidal power, advantages and limitations of tidal power generation-Energy and power from waves- wave energy conversion devices.

UNIT V BIOMASS ENERGY

Introduction-Biomass classification- Biomass conversion technologies-Bio-gas generation-Factors affecting bio-digestion -Working of biogas plant- floating and fixed dome type plant -advantages and disadvantage of -Bio-gas from plant wastes-Methods for obtaining energy from biomass- Thermal gasification of biomass-Working of downdraft gasifier-Advantages and disadvantages of biological conversion of solar energy.

10 Hours

10 Hours

12 Hours

10 Hours

10 Hours

Credit : 4 Hours/Week : 4 Total Hours : 52

Text Books

- Rai G. D. (2021). *Solar Energy Handbook*. MLI Handbook Series.
- S. P. Sukhatme, J K. Nayak.(2017). *Solar Energy*. TMH. (4th Ed.).
- Kothari, D.P., K.C. Singal and Rakesh Ranjan. (2008). *Renewable Energy Sources and Emerging Technologies*. Prentice Hall of India.
- Kalogirou, S.A. (2013). *Solar Energy Engineering: Processes and Systems*. (2nd Ed.). Academic Press.

Reference Books

- Mukund R. Patel, Omid Beik. (2021). *Wind and Solar Power Systems: Design, Analysis, and Operation.* (3rd Ed.). CRC Press.
- Chetan Singh Solanki, (2011). *Solar Photvoltaics Fundamentals, Technologies and Applications.* (2nd Ed.). PHI Learning Private Limited.
- Rai G. D. (2010). Non Conventional Energy Sources. 4th Edition, Khanna Publishers.
- Jeffrey M. Gordon. (2013). Solar Energy: The State of the Art. Earthscan.
- Zobaa A.F. and Ramesh Bansal. (2011). *Handbook of Renewable Energy Technology*. *World Scientific*.

e- Resources

- https://www.routledge.com/The-Physics-of-Solar-Energy-Conversion/Bisquert/ p/book/9781138584648
- https://www.google.co.in/books/edition/Renewable_Energy_Conversion_Transmission/l E1e4chSiSsC?hl=en&gbpv=1&printsec=frontcover

Course Outcomes:

CO No.	On completion of the course the student will be able to	Bloom's Level
CO – 1	Acquire fundamental knowledge of energy resources.	K1 & K2
CO – 2	Understand the solar thermal energy with its applications.	K3
CO – 3	Integrate the uses of photovoltaic solar cell.	K4
CO – 4	Expose the limitation, advantages, and applications of wind energy.	K1 & K3
CO – 5	Review the ideas of biomass energy using various methods.	K6

MAJOR PRACTICAL V UPHR503

Semester : V Category : Major Core Practical (DSC) – XVI Class & Major: III B.Sc Physics Course Objectives: Credit : 3 Hours/Week : 3

Total Hours : 39

CO No.	To enable the students	
CO – 1	Know the concept of the Electronically equipments from experimental vision.	
CO – 2	Tabulate the electronically experiments and its characteristics.	
CO – 3	Compare the operational amplifier adder, subtractor, integrator and differentiator for day today life application.	
CO – 4	Display the frequency characteristics by the RC coupled amplifier.	
CO – 5	Experiment the uniqueness of the clipping and clamping circuits.	

List of Experiments

- 1. Construct the V-I Characteristics of Zener Diode.
- 2. Verify the Characteristics of Transistor in CE Configuration.
- 3. Design Full Wave Bridge Rectifier.
- 4. Construct the Voltage Stabilization of using Zener Diode.
- 5. Design the Operational Amplifier as Adder and Subtractor.
- 6. Design the Operational Amplifier as Integrator, Differentiator, and Voltage Follower.
- 7. Construct the NOR as Universal Gate.
- 8. Verify the Single stage Amplifier Frequency Determination.
- 9. Demonstrate the Half Wave Bridge Rectifier.
- 10. Construct the Junction Diode Characteristics.
- 11. Construct the NAND as a Universal Gate.
- 12. Construct the Half Adder and Full Adder.
- 13. Design the Clipping and Clamping Circuits.
- 14. Design the Operational Amplifier as Inverting and Non-Inverting Amplifier.
- 15. Demo on UV-Visible Spectrometer.
- 16. Demo on FT-IR Spectrometer.

Text Books

- Srinivasan, N. Balasubramanian, S and Ranganathan, R. (2006). *The Text Book of Practical Physics*, Sultan Chand & Sons.
- Andy Cooper. (2016). Practical Electronics: A Complete Introduction. Teach Yourself.
- S.L. Gupta and V.Kumar. (2017). Practical Physics. Pragati Prakashan Meerut.
- Dr Arunadevi Shantappa Birajdar. (2019). Text Book for UV-Visible Spectroscopy. Mahipublication.

Reference Books

- Ponnusamy, A. and Amalanathan, B. (2006). Practical Physics. Bright Publishers.
- Ian Sinclair. (2006). Practical Electronics Handbook. (6th Ed.). Elsevier.

- Ouseph, C.C. Rangarajan, G. (1996). *A The Text Book of Practical Physics*. Viswanathan Publishers.
- Sivasankar, B. (2012). *Instrumental Methods of Analysis*. Oxford University Press. New Delhi.
- Peter R. Griffiths. James A. De Haseth. James D. Winefordner. (2007). Fourier Transform Infrared Spectrometry. (2nd Ed.). Wiley-Interscience.

e-Resources

- https://www.niser.ac.in/sps/sites/default/files/basic_page/P242_BasicElectronics_Lab.pdf
- https://books.google.co.in/books/about/ELECTRONICS_LAB_MANUAL_VOLUME_2 .html?id=Li57DwAAQBAJ&redir_esc=y

Course Outcomes:

CO No.	On completion of the course the student will be able to	
CO – 1	Acquire the basics of Amplifier, Diode and Transistor.	K1 & K3
CO – 2	Demonstrate the Zener Diode, PN Junction and Rectifier.	K3
CO – 3	Apply the Significance of Electronical experiments in Practical Life.	K4
CO – 4	Integrate the idea of the Voltage stabilization and I-V characteristics.	K5
CO – 5	Manage the consequence of Junction Diode in day today life.	K3 & K6

PROJECT UPHP501

Semester : V Category : Major Core (DSC) – XVII Class & Major: III B.Sc Physics Guidelines

Credit : 4 Hours/Weeks: 2 + 4 Total Hours : 78

- This course is offered as group project
- No. of students is limited from 3 to 4

PROJECT EVALUATION

		Evaluation	
		CIA	ESE
S.No.	Criteria	(Valuation by	(Average of
		Faculty Guide)	Internal &External
			marks)
1	Choice of the problem & Defining the problem	10	-
2	Review of literature, Research proposal	10	-
3	Collection of Data / Experimentation & Analysis of	10	-
	Data / Experimentation result, Preparation of report		
4	Research Publication	30	-
5	Project report	-	30
6	Viva voce	-	10
	Total	60	40

INSTRUMENTATION TECHNIQUES UPHP502

Semester : V Category : Major Core (DSC) – XVII Class & Major : III B.Sc Physics

Objectives:

To enable the students

- Understand the Concepts of Electromagnetic Radiation.
- Apply the Knowledge in Different Techniques.

UNIT- I ELECTROMAGNETIC RADIATION

Electromagnetic Radiation–Different Regions, their Wavelengths, Frequencies and Energies–Interaction of EM Radiations with Matter – Atomic, Molecular, Electronic Interaction– Basic Principles of Spectroscopy –Emission and Absorption of Radiations–Radiation Sources – Dispersing and Resolving Techniques – Detectors – typical Atomic Emission and Absorption Spectrographs in the UV and Visible Region.

UNIT- II MOLECULAR SPECTRA

IR Absorption – Spectroscopy –RAMAN Spectroscopy – Instrumentation Techniques for Analyzing Solid, Liquid and Gaseous samples – sample handling Techniques.

UNIT- III DIFFRACTION TECHNIQUES

Microstructure Characterization Diffraction Techniques: Interpretation of Single Crystal and Powder Crystal X-RAY Diffraction Patterns, Identification & Quantitative Estimation of unknown samples by X-ray Powder Diffraction Technique and Fluorescent Analysis – Theory and Method of Particle Size Analysis.

UNIT-IV ELECTRON MICROSCOPY TECHNIQUES AND ELCTRONIC INSTRUMENTS 14 Hours

Electron Microscopy techniques related to Nanomaterials SEM, TEM & AFM (Instrumentation and Working only).

Digital Voltmeters and Multimeters–Electronic Counters–AC Millivoltmeter–Wave Analyzers and Spectrum Analyzers–Frequency Synthesizers –Lock in Amplifier–Frequency Response Analyzer Phase Meter.

UNIT- V ELECTRONIC RECORDERS AND DISPLAYS 13 Hours

Standard Lab Equipments–Signal Generator–Pulse Generator–CRO–VTVM–Wave Analysis Recorders–Analog Recorders–XY – Recorders–Stripe Chart Recorder–Oscilloscope Recorder–Digital Recorder– Digital Readout CRO.

Credit : 5 Hours/Weeks : 5 Total Hours : 65

13 Hours

12 Hours

Text Books

- Aruldas, G. (2007). *Molecular Structure and Spectroscopy*. Print *Book*. English. (2nd ed.) New Delhi.
- Sawnney, A.K. (2005). A Course in Electrical & Electronic Measurements & Instrumentation. Dhanpat Rai & Co.

Reference Books

- Skoog, D.A. West, D.M. (2000). *Principles of Instrumental Analysis*. (2nd ed.,). Holt-Saunders.
- Cottrell, Sir A. (2000). An Introduction to Metallurgy. University Press.
- Brophy, J.H. Rose R.M. Wulff, J. (2007). *The Structure & Properties of Materials* (Volume II). Wiley Eastern Ltd.

Semester	Category	Course Code	Course Title	Component-III	Component-IV
V	Major Core (DSC) – XII	UPHM507	Quantum Mechanics and Relativity	Problem Solving	Seminar
	Major Core (DSC) – XIII	UPHM508	Basic Electronics	Seminar	Model Display
	Major Core (DSC) – XIV	UPHM509	Solid State Physics	Poster Presentation	Seminar
	Major Elective (Discipline Specific Elective) - XV	UPHO501	Medical Physics	Seminar	Poster Presentation
	Major Elective (Discipline Specific Elective) - XV	UPHO502	Energy Physics	Seminar	Model Display

III AND IV EVALUATION COMPONENTS OF CIA